C++ allows you to specify more than one definition for a function name or an operator in the same scope, which is called function overloading and operator overloading respectively.
An overloaded declaration is a declaration that had been declared with the same name as a previously declared declaration in the same scope, except that both declarations have different arguments and obviously different definition (implementation).
When you call an overloaded function or operator, the compiler determines the most appropriate definition to use by comparing the argument types you used to call the function or operator with the parameter types specified in the definitions. The process of selecting the most appropriate overloaded function or operator is called overload resolution.
Function overloading in C++:
You can have multiple definitions for the same function name in the same scope. The definition of the function must differ from each other by the types and/or the number of arguments in the argument list. You can not overload function declarations that differ only by return type.
Following is the example where same function print() is being used to print different data types:
#include <iostream>
using namespace std;
class printData
{
public:
void print(int i) {
cout << "Printing int: " << i << endl;
}
void print(double f) {
cout << "Printing float: " << f << endl;
}
void print(char* c) {
cout << "Printing character: " << c << endl;
}
};
int main(void)
{
printData pd;
// Call print to print integer
pd.print(5);
// Call print to print float
pd.print(500.263);
// Call print to print character
pd.print("Hello C++");
return 0;
}
When the above code is compiled and executed, it produces the following result:
Printing int: 5
Printing float: 500.263
Printing character: Hello C++
Operators overloading in C++:
You can redefine or overload most of the built-in operators available in C++. Thus a programmer can use operators with user-defined types as well.
Overloaded operators are functions with special names the keyword operator followed by the symbol for the operator being defined. Like any other function, an overloaded operator has a return type and a parameter list.
Box operator+(const Box&);
declares the addition operator that can be used to add two Box objects and returns final Box object. Most overloaded operators may be defined as ordinary non-member functions or as class member functions. In case we define above function as non-member function of a class then we would have to pass two arguments for each operand as follows:
Box operator+(const Box&, const Box&);
Following is the example to show the concept of operator over loading using a member function. Here an object is passed as an argument whose properties will be accessed using this object, the object which will call this operator can be accessed using this operator as explained below:
#include <iostream>
using namespace std;
class Box
{
public:
double getVolume(void)
{
return length * breadth * height;
}
void setLength( double len )
{
length = len;
}
void setBreadth( double bre )
{
breadth = bre;
}
void setHeight( double hei )
{
height = hei;
}
// Overload + operator to add two Box objects.
Box operator+(const Box& b)
{
Box box;
box.length = this->length + b.length;
box.breadth = this->breadth + b.breadth;
box.height = this->height + b.height;
return box;
}
private:
double length; // Length of a box
double breadth; // Breadth of a box
double height; // Height of a box
};
// Main function for the program
int main( )
{
Box Box1; // Declare Box1 of type Box
Box Box2; // Declare Box2 of type Box
Box Box3; // Declare Box3 of type Box
double volume = 0.0; // Store the volume of a box here
// box 1 specification
Box1.setLength(6.0);
Box1.setBreadth(7.0);
Box1.setHeight(5.0);
// box 2 specification
Box2.setLength(12.0);
Box2.setBreadth(13.0);
Box2.setHeight(10.0);
// volume of box 1
volume = Box1.getVolume();
cout << "Volume of Box1 : " << volume <<endl;
// volume of box 2
volume = Box2.getVolume();
cout << "Volume of Box2 : " << volume <<endl;
// Add two object as follows:
Box3 = Box1 + Box2;
// volume of box 3
volume = Box3.getVolume();
cout << "Volume of Box3 : " << volume <<endl;
return 0;
}
When the above code is compiled and executed, it produces the following result:
Volume of Box1 : 210
Volume of Box2 : 1560
Volume of Box3 : 5400
Overloadable/Non-overloadableOperators:
Following is the list of operators which can be overloaded:+ - * / % ^
& | ~ ! , =
< > <= >= ++ --
<< >> == != && ||
+= -= /= %= ^= &=
|= *= <<= >>= [] ()
-> ->* new new [] delete delete []
Following is the list of operators, which can not be overloaded::: .* . ?:
The unary operators operate on a single operand and following are the examples of Unary operators:
The increment (++) and decrement (--) operators.
The unary minus (-) operator.
The logical not (!) operator.
The unary operators operate on the object for which they were called and normally, this operator appears on the left side of the object, as in !obj, -obj, and ++obj but sometime they can be used as postfix as well like obj++ or obj--.
Following example explain how minus (-) operator can be overloaded for prefix as well as postfix usage.
#include <iostream>
using namespace std;
class Distance
{
private:
int feet; // 0 to infinite
int inches; // 0 to 12
public:
// required constructors
Distance(){
feet = 0;
inches = 0;
}
Distance(int f, int i){
feet = f;
inches = i;
}
// method to display distance
void displayDistance()
{
cout << "F: " << feet << " I:" << inches <<endl;
}
// overloaded minus (-) operator
Distance operator- ()
{
feet = -feet;
inches = -inches;
return Distance(feet, inches);
}
};
int main()
{
Distance D1(11, 10), D2(-5, 11);
-D1; // apply negation
D1.displayDistance(); // display D1
-D2; // apply negation
D2.displayDistance(); // display D2
return 0;
}
When the above code is compiled and executed, it produces the following result:
F: -11 I:-10
F: 5 I:-11
Hope above example makes your concept clear and you can apply similar concept to overload Logical Not Operators (!).
The unary operators take two arguments and following are the examples of Binary operators. You use binary operators very frequently like addition (+) operator, subtraction (-) operator and division (/) operator.
Following example explains how addition (+) operator can be overloaded. Similar way, you can overload subtraction (-) and division (/) operators.
#include <iostream>
using namespace std;
class Box
{
double length; // Length of a box
double breadth; // Breadth of a box
double height; // Height of a box
public:
double getVolume(void)
{
return length * breadth * height;
}
void setLength( double len )
{
length = len;
}
void setBreadth( double bre )
{
breadth = bre;
}
void setHeight( double hei )
{
height = hei;
}
// Overload + operator to add two Box objects.
Box operator+(const Box& b)
{
Box box;
box.length = this->length + b.length;
box.breadth = this->breadth + b.breadth;
box.height = this->height + b.height;
return box;
}
};
// Main function for the program
int main( )
{
Box Box1; // Declare Box1 of type Box
Box Box2; // Declare Box2 of type Box
Box Box3; // Declare Box3 of type Box
double volume = 0.0; // Store the volume of a box here
// box 1 specification
Box1.setLength(6.0);
Box1.setBreadth(7.0);
Box1.setHeight(5.0);
// box 2 specification
Box2.setLength(12.0);
Box2.setBreadth(13.0);
Box2.setHeight(10.0);
// volume of box 1
volume = Box1.getVolume();
cout << "Volume of Box1 : " << volume <<endl;
// volume of box 2
volume = Box2.getVolume();
cout << "Volume of Box2 : " << volume <<endl;
// Add two object as follows:
Box3 = Box1 + Box2;
// volume of box 3
volume = Box3.getVolume();
cout << "Volume of Box3 : " << volume <<endl;
return 0;
}
When the above code is compiled and executed, it produces the following result:
Volume of Box1 : 210
Volume of Box2 : 1560
Volume of Box3 : 5400
There are various relational operators supported by C++ language like (<, >, <=, >=, ==, etc.) which can be used to compare C++ built-in data types.
You can overload any of these operators, which can be used to compare the objects of a class.
Following example explains how a < operator can be overloaded and similar way you can overload other relational operators.
#include <iostream>
using namespace std;
class Distance
{
private:
int feet; // 0 to infinite
int inches; // 0 to 12
public:
// required constructors
Distance(){
feet = 0;
inches = 0;
}
Distance(int f, int i){
feet = f;
inches = i;
}
// method to display distance
void displayDistance()
{
cout << "F: " << feet << " I:" << inches <<endl;
}
// overloaded minus (-) operator
Distance operator- ()
{
feet = -feet;
inches = -inches;
return Distance(feet, inches);
}
// overloaded < operator
bool operator <(const Distance& d)
{
if(feet < d.feet)
{
return true;
}
if(feet == d.feet && inches < d.inches)
{
return true;
}
return false;
}
};
int main()
{
Distance D1(11, 10), D2(5, 11);
if( D1 < D2 )
{
cout << "D1 is less than D2 " << endl;
}
else
{
cout << "D2 is less than D1 " << endl;
}
return 0;
}
When the above code is compiled and executed, it produces the following result:
D2 is less than D1
C++ is able to input and output the built-in data types using the stream extraction operator >> and the stream insertion operator <<. The stream insertion and stream extraction operators also can be overloaded to perform input and output for user-defined types like an object.
Here, it is important to make operator overloading function a friend of the class because it would be called without creating an object.
Following example explains how extraction operator >> and insertion operator <<.
#include <iostream>
using namespace std;
class Distance
{
private:
int feet; // 0 to infinite
int inches; // 0 to 12
public:
// required constructors
Distance(){
feet = 0;
inches = 0;
}
Distance(int f, int i){
feet = f;
inches = i;
}
friend ostream &operator<<( ostream &output,
const Distance &D )
{
output << "F : " << D.feet << " I : " << D.inches;
return output;
}
friend istream &operator>>( istream &input, Distance &D )
{
input >> D.feet >> D.inches;
return input;
}
};
int main()
{
Distance D1(11, 10), D2(5, 11), D3;
cout << "Enter the value of object : " << endl;
cin >> D3;
cout << "First Distance : " << D1 << endl;
cout << "Second Distance :" << D2 << endl;
cout << "Third Distance :" << D3 << endl;
return 0;
}
When the above code is compiled and executed, it produces the following result:
$./a.out
Enter the value of object :
70
10
First Distance : F : 11 I : 10
Second Distance :F : 5 I : 11
Third Distance :F : 70 I : 10
The increment (++) and decrement (--) operators are two important unary operators available in C++.
Following example explain how increment (++) operator can be overloaded for prefix as well as postfix usage. Similar way, you can overload operator (--).
#include <iostream>
using namespace std;
class Time
{
private:
int hours; // 0 to 23
int minutes; // 0 to 59
public:
// required constructors
Time(){
hours = 0;
minutes = 0;
}
Time(int h, int m){
hours = h;
minutes = m;
}
// method to display time
void displayTime()
{
cout << "H: " << hours << " M:" << minutes <<endl;
}
// overloaded prefix ++ operator
Time operator++ ()
{
++minutes; // increment this object
if(minutes >= 60)
{
++hours;
minutes -= 60;
}
return Time(hours, minutes);
}
// overloaded postfix ++ operator
Time operator++( int )
{
// save the orignal value
Time T(hours, minutes);
// increment this object
++minutes;
if(minutes >= 60)
{
++hours;
minutes -= 60;
}
// return old original value
return T;
}
};
int main()
{
Time T1(11, 59), T2(10,40);
++T1; // increment T1
T1.displayTime(); // display T1
++T1; // increment T1 again
T1.displayTime(); // display T1
T2++; // increment T2
T2.displayTime(); // display T2
T2++; // increment T2 again
T2.displayTime(); // display T2
return 0;
}
When the above code is compiled and executed, it produces the following result:
H: 12 M:0
H: 12 M:1
H: 10 M:41
H: 10 M:42
You can overload the assignment operator (=) just as you can other operators and it can be used to create an object just like the copy constructor.
Following example explains how an assignment operator can be overloaded.
#include <iostream>
using namespace std;
class Distance
{
private:
int feet; // 0 to infinite
int inches; // 0 to 12
public:
// required constructors
Distance(){
feet = 0;
inches = 0;
}
Distance(int f, int i){
feet = f;
inches = i;
}
void operator=(const Distance &D )
{
feet = D.feet;
inches = D.inches;
}
// method to display distance
void displayDistance()
{
cout << "F: " << feet << " I:" << inches << endl;
}
};
int main()
{
Distance D1(11, 10), D2(5, 11);
cout << "First Distance : ";
D1.displayDistance();
cout << "Second Distance :";
D2.displayDistance();
// use assignment operator
D1 = D2;
cout << "First Distance :";
D1.displayDistance();
return 0;
}
When the above code is compiled and executed, it produces the following result:
First Distance : F: 11 I:10
Second Distance :F: 5 I:11
First Distance :F: 5 I:11
The function call operator () can be overloaded for objects of class type. When you overload ( ), you are not creating a new way to call a function. Rather, you are creating an operator function that can be passed an arbitrary number of parameters.
Following example explains how a function call operator () can be overloaded.
#include <iostream>
using namespace std;
class Distance
{
private:
int feet; // 0 to infinite
int inches; // 0 to 12
public:
// required constructors
Distance(){
feet = 0;
inches = 0;
}
Distance(int f, int i){
feet = f;
inches = i;
}
// overload function call
Distance operator()(int a, int b, int c)
{
Distance D;
// just put random calculation
D.feet = a + c + 10;
D.inches = b + c + 100 ;
return D;
}
// method to display distance
void displayDistance()
{
cout << "F: " << feet << " I:" << inches << endl;
}
};
int main()
{
Distance D1(11, 10), D2;
cout << "First Distance : ";
D1.displayDistance();
D2 = D1(10, 10, 10); // invoke operator()
cout << "Second Distance :";
D2.displayDistance();
return 0;
}
When the above code is compiled and executed, it produces the following result:
First Distance : F: 11 I:10
Second Distance :F: 30 I:120
The subscript operator [] is normally used to access array elements. This operator can be overloaded to enhance the existing functionality of C++ arrays.
Following example explains how a subscript operator [] can be overloaded.
#include <iostream>
using namespace std;
const int SIZE = 10;
class safearay
{
private:
int arr[SIZE];
public:
safearay()
{
register int i;
for(i = 0; i < SIZE; i++)
{
arr[i] = i;
}
}
int &operator[](int i)
{
if( i > SIZE )
{
cout << "Index out of bounds" <<endl;
// return first element.
return arr[0];
}
return arr[i];
}
};
int main()
{
safearay A;
cout << "Value of A[2] : " << A[2] <<endl;
cout << "Value of A[5] : " << A[5]<<endl;
cout << "Value of A[12] : " << A[12]<<endl;
return 0;
}
When the above code is compiled and executed, it produces the following result:
Value of A[2] : 2
Value of A[5] : 5
Index out of bounds
Value of A[12] : 0
The class member access operator (->) can be overloaded but it is bit trickier. It is defined to give a class type a "pointer-like" behavior. The operator -> must be a member function. If used, its return type must be a pointer or an object of a class to which you can apply.
The operator-> is used often in conjunction with the pointer-dereference operator * to implement "smart pointers." These pointers are objects that behave like normal pointers except they perform other tasks when you access an object through them, such as automatic object deletion either when the pointer is destroyed, or the pointer is used to point to another object.
The dereferencing operator-> can be defined as a unary postfix operator. That is, given a class:
class Ptr{
//...
X * operator->();
};
Objects of class Ptr can be used to access members of class X in a very similar manner to the way pointers are used. For example:
void f(Ptr p )
{
p->m = 10 ; // (p.operator->())->m = 10
}
The statement p->m is interpreted as (p.operator->())->m. Using the same concept, following example explains how a class access operator -> can be overloaded.
#include <iostream>
#include <vector>
using namespace std;
// Consider an actual class.
class Obj {
static int i, j;
public:
void f() const { cout << i++ << endl; }
void g() const { cout << j++ << endl; }
};
// Static member definitions:
int Obj::i = 10;
int Obj::j = 12;
// Implement a container for the above class
class ObjContainer {
vector<Obj*> a;
public:
void add(Obj* obj)
{
a.push_back(obj); // call vector's standard method.
}
friend class SmartPointer;
};
// implement smart pointer to access member of Obj class.
class SmartPointer {
ObjContainer oc;
int index;
public:
SmartPointer(ObjContainer& objc)
{
oc = objc;
index = 0;
}
// Return value indicates end of list:
bool operator++() // Prefix version
{
if(index >= oc.a.size()) return false;
if(oc.a[++index] == 0) return false;
return true;
}
bool operator++(int) // Postfix version
{
return operator++();
}
// overload operator->
Obj* operator->() const
{
if(!oc.a[index])
{
cout << "Zero value";
return (Obj*)0;
}
return oc.a[index];
}
};
int main() {
const int sz = 10;
Obj o[sz];
ObjContainer oc;
for(int i = 0; i < sz; i++)
{
oc.add(&o[i]);
}
SmartPointer sp(oc); // Create an iterator
do {
sp->f(); // smart pointer call
sp->g();
} while(sp++);
return 0;
}
When the above code is compiled and executed, it produces the following result:
10
12
11
13
12
14
13
15
14
16
15
17
16
18
17
19
18
20
19
21
An overloaded declaration is a declaration that had been declared with the same name as a previously declared declaration in the same scope, except that both declarations have different arguments and obviously different definition (implementation).
When you call an overloaded function or operator, the compiler determines the most appropriate definition to use by comparing the argument types you used to call the function or operator with the parameter types specified in the definitions. The process of selecting the most appropriate overloaded function or operator is called overload resolution.
Function overloading in C++:
You can have multiple definitions for the same function name in the same scope. The definition of the function must differ from each other by the types and/or the number of arguments in the argument list. You can not overload function declarations that differ only by return type.
Following is the example where same function print() is being used to print different data types:
#include <iostream>
using namespace std;
class printData
{
public:
void print(int i) {
cout << "Printing int: " << i << endl;
}
void print(double f) {
cout << "Printing float: " << f << endl;
}
void print(char* c) {
cout << "Printing character: " << c << endl;
}
};
int main(void)
{
printData pd;
// Call print to print integer
pd.print(5);
// Call print to print float
pd.print(500.263);
// Call print to print character
pd.print("Hello C++");
return 0;
}
When the above code is compiled and executed, it produces the following result:
Printing int: 5
Printing float: 500.263
Printing character: Hello C++
Operators overloading in C++:
You can redefine or overload most of the built-in operators available in C++. Thus a programmer can use operators with user-defined types as well.
Overloaded operators are functions with special names the keyword operator followed by the symbol for the operator being defined. Like any other function, an overloaded operator has a return type and a parameter list.
Box operator+(const Box&);
declares the addition operator that can be used to add two Box objects and returns final Box object. Most overloaded operators may be defined as ordinary non-member functions or as class member functions. In case we define above function as non-member function of a class then we would have to pass two arguments for each operand as follows:
Box operator+(const Box&, const Box&);
Following is the example to show the concept of operator over loading using a member function. Here an object is passed as an argument whose properties will be accessed using this object, the object which will call this operator can be accessed using this operator as explained below:
#include <iostream>
using namespace std;
class Box
{
public:
double getVolume(void)
{
return length * breadth * height;
}
void setLength( double len )
{
length = len;
}
void setBreadth( double bre )
{
breadth = bre;
}
void setHeight( double hei )
{
height = hei;
}
// Overload + operator to add two Box objects.
Box operator+(const Box& b)
{
Box box;
box.length = this->length + b.length;
box.breadth = this->breadth + b.breadth;
box.height = this->height + b.height;
return box;
}
private:
double length; // Length of a box
double breadth; // Breadth of a box
double height; // Height of a box
};
// Main function for the program
int main( )
{
Box Box1; // Declare Box1 of type Box
Box Box2; // Declare Box2 of type Box
Box Box3; // Declare Box3 of type Box
double volume = 0.0; // Store the volume of a box here
// box 1 specification
Box1.setLength(6.0);
Box1.setBreadth(7.0);
Box1.setHeight(5.0);
// box 2 specification
Box2.setLength(12.0);
Box2.setBreadth(13.0);
Box2.setHeight(10.0);
// volume of box 1
volume = Box1.getVolume();
cout << "Volume of Box1 : " << volume <<endl;
// volume of box 2
volume = Box2.getVolume();
cout << "Volume of Box2 : " << volume <<endl;
// Add two object as follows:
Box3 = Box1 + Box2;
// volume of box 3
volume = Box3.getVolume();
cout << "Volume of Box3 : " << volume <<endl;
return 0;
}
When the above code is compiled and executed, it produces the following result:
Volume of Box1 : 210
Volume of Box2 : 1560
Volume of Box3 : 5400
Overloadable/Non-overloadableOperators:
Following is the list of operators which can be overloaded:+ - * / % ^
& | ~ ! , =
< > <= >= ++ --
<< >> == != && ||
+= -= /= %= ^= &=
|= *= <<= >>= [] ()
-> ->* new new [] delete delete []
Following is the list of operators, which can not be overloaded::: .* . ?:
The unary operators operate on a single operand and following are the examples of Unary operators:
The increment (++) and decrement (--) operators.
The unary minus (-) operator.
The logical not (!) operator.
The unary operators operate on the object for which they were called and normally, this operator appears on the left side of the object, as in !obj, -obj, and ++obj but sometime they can be used as postfix as well like obj++ or obj--.
Following example explain how minus (-) operator can be overloaded for prefix as well as postfix usage.
#include <iostream>
using namespace std;
class Distance
{
private:
int feet; // 0 to infinite
int inches; // 0 to 12
public:
// required constructors
Distance(){
feet = 0;
inches = 0;
}
Distance(int f, int i){
feet = f;
inches = i;
}
// method to display distance
void displayDistance()
{
cout << "F: " << feet << " I:" << inches <<endl;
}
// overloaded minus (-) operator
Distance operator- ()
{
feet = -feet;
inches = -inches;
return Distance(feet, inches);
}
};
int main()
{
Distance D1(11, 10), D2(-5, 11);
-D1; // apply negation
D1.displayDistance(); // display D1
-D2; // apply negation
D2.displayDistance(); // display D2
return 0;
}
When the above code is compiled and executed, it produces the following result:
F: -11 I:-10
F: 5 I:-11
Hope above example makes your concept clear and you can apply similar concept to overload Logical Not Operators (!).
The unary operators take two arguments and following are the examples of Binary operators. You use binary operators very frequently like addition (+) operator, subtraction (-) operator and division (/) operator.
Following example explains how addition (+) operator can be overloaded. Similar way, you can overload subtraction (-) and division (/) operators.
#include <iostream>
using namespace std;
class Box
{
double length; // Length of a box
double breadth; // Breadth of a box
double height; // Height of a box
public:
double getVolume(void)
{
return length * breadth * height;
}
void setLength( double len )
{
length = len;
}
void setBreadth( double bre )
{
breadth = bre;
}
void setHeight( double hei )
{
height = hei;
}
// Overload + operator to add two Box objects.
Box operator+(const Box& b)
{
Box box;
box.length = this->length + b.length;
box.breadth = this->breadth + b.breadth;
box.height = this->height + b.height;
return box;
}
};
// Main function for the program
int main( )
{
Box Box1; // Declare Box1 of type Box
Box Box2; // Declare Box2 of type Box
Box Box3; // Declare Box3 of type Box
double volume = 0.0; // Store the volume of a box here
// box 1 specification
Box1.setLength(6.0);
Box1.setBreadth(7.0);
Box1.setHeight(5.0);
// box 2 specification
Box2.setLength(12.0);
Box2.setBreadth(13.0);
Box2.setHeight(10.0);
// volume of box 1
volume = Box1.getVolume();
cout << "Volume of Box1 : " << volume <<endl;
// volume of box 2
volume = Box2.getVolume();
cout << "Volume of Box2 : " << volume <<endl;
// Add two object as follows:
Box3 = Box1 + Box2;
// volume of box 3
volume = Box3.getVolume();
cout << "Volume of Box3 : " << volume <<endl;
return 0;
}
When the above code is compiled and executed, it produces the following result:
Volume of Box1 : 210
Volume of Box2 : 1560
Volume of Box3 : 5400
There are various relational operators supported by C++ language like (<, >, <=, >=, ==, etc.) which can be used to compare C++ built-in data types.
You can overload any of these operators, which can be used to compare the objects of a class.
Following example explains how a < operator can be overloaded and similar way you can overload other relational operators.
#include <iostream>
using namespace std;
class Distance
{
private:
int feet; // 0 to infinite
int inches; // 0 to 12
public:
// required constructors
Distance(){
feet = 0;
inches = 0;
}
Distance(int f, int i){
feet = f;
inches = i;
}
// method to display distance
void displayDistance()
{
cout << "F: " << feet << " I:" << inches <<endl;
}
// overloaded minus (-) operator
Distance operator- ()
{
feet = -feet;
inches = -inches;
return Distance(feet, inches);
}
// overloaded < operator
bool operator <(const Distance& d)
{
if(feet < d.feet)
{
return true;
}
if(feet == d.feet && inches < d.inches)
{
return true;
}
return false;
}
};
int main()
{
Distance D1(11, 10), D2(5, 11);
if( D1 < D2 )
{
cout << "D1 is less than D2 " << endl;
}
else
{
cout << "D2 is less than D1 " << endl;
}
return 0;
}
When the above code is compiled and executed, it produces the following result:
D2 is less than D1
C++ is able to input and output the built-in data types using the stream extraction operator >> and the stream insertion operator <<. The stream insertion and stream extraction operators also can be overloaded to perform input and output for user-defined types like an object.
Here, it is important to make operator overloading function a friend of the class because it would be called without creating an object.
Following example explains how extraction operator >> and insertion operator <<.
#include <iostream>
using namespace std;
class Distance
{
private:
int feet; // 0 to infinite
int inches; // 0 to 12
public:
// required constructors
Distance(){
feet = 0;
inches = 0;
}
Distance(int f, int i){
feet = f;
inches = i;
}
friend ostream &operator<<( ostream &output,
const Distance &D )
{
output << "F : " << D.feet << " I : " << D.inches;
return output;
}
friend istream &operator>>( istream &input, Distance &D )
{
input >> D.feet >> D.inches;
return input;
}
};
int main()
{
Distance D1(11, 10), D2(5, 11), D3;
cout << "Enter the value of object : " << endl;
cin >> D3;
cout << "First Distance : " << D1 << endl;
cout << "Second Distance :" << D2 << endl;
cout << "Third Distance :" << D3 << endl;
return 0;
}
When the above code is compiled and executed, it produces the following result:
$./a.out
Enter the value of object :
70
10
First Distance : F : 11 I : 10
Second Distance :F : 5 I : 11
Third Distance :F : 70 I : 10
The increment (++) and decrement (--) operators are two important unary operators available in C++.
Following example explain how increment (++) operator can be overloaded for prefix as well as postfix usage. Similar way, you can overload operator (--).
#include <iostream>
using namespace std;
class Time
{
private:
int hours; // 0 to 23
int minutes; // 0 to 59
public:
// required constructors
Time(){
hours = 0;
minutes = 0;
}
Time(int h, int m){
hours = h;
minutes = m;
}
// method to display time
void displayTime()
{
cout << "H: " << hours << " M:" << minutes <<endl;
}
// overloaded prefix ++ operator
Time operator++ ()
{
++minutes; // increment this object
if(minutes >= 60)
{
++hours;
minutes -= 60;
}
return Time(hours, minutes);
}
// overloaded postfix ++ operator
Time operator++( int )
{
// save the orignal value
Time T(hours, minutes);
// increment this object
++minutes;
if(minutes >= 60)
{
++hours;
minutes -= 60;
}
// return old original value
return T;
}
};
int main()
{
Time T1(11, 59), T2(10,40);
++T1; // increment T1
T1.displayTime(); // display T1
++T1; // increment T1 again
T1.displayTime(); // display T1
T2++; // increment T2
T2.displayTime(); // display T2
T2++; // increment T2 again
T2.displayTime(); // display T2
return 0;
}
When the above code is compiled and executed, it produces the following result:
H: 12 M:0
H: 12 M:1
H: 10 M:41
H: 10 M:42
You can overload the assignment operator (=) just as you can other operators and it can be used to create an object just like the copy constructor.
Following example explains how an assignment operator can be overloaded.
#include <iostream>
using namespace std;
class Distance
{
private:
int feet; // 0 to infinite
int inches; // 0 to 12
public:
// required constructors
Distance(){
feet = 0;
inches = 0;
}
Distance(int f, int i){
feet = f;
inches = i;
}
void operator=(const Distance &D )
{
feet = D.feet;
inches = D.inches;
}
// method to display distance
void displayDistance()
{
cout << "F: " << feet << " I:" << inches << endl;
}
};
int main()
{
Distance D1(11, 10), D2(5, 11);
cout << "First Distance : ";
D1.displayDistance();
cout << "Second Distance :";
D2.displayDistance();
// use assignment operator
D1 = D2;
cout << "First Distance :";
D1.displayDistance();
return 0;
}
When the above code is compiled and executed, it produces the following result:
First Distance : F: 11 I:10
Second Distance :F: 5 I:11
First Distance :F: 5 I:11
The function call operator () can be overloaded for objects of class type. When you overload ( ), you are not creating a new way to call a function. Rather, you are creating an operator function that can be passed an arbitrary number of parameters.
Following example explains how a function call operator () can be overloaded.
#include <iostream>
using namespace std;
class Distance
{
private:
int feet; // 0 to infinite
int inches; // 0 to 12
public:
// required constructors
Distance(){
feet = 0;
inches = 0;
}
Distance(int f, int i){
feet = f;
inches = i;
}
// overload function call
Distance operator()(int a, int b, int c)
{
Distance D;
// just put random calculation
D.feet = a + c + 10;
D.inches = b + c + 100 ;
return D;
}
// method to display distance
void displayDistance()
{
cout << "F: " << feet << " I:" << inches << endl;
}
};
int main()
{
Distance D1(11, 10), D2;
cout << "First Distance : ";
D1.displayDistance();
D2 = D1(10, 10, 10); // invoke operator()
cout << "Second Distance :";
D2.displayDistance();
return 0;
}
When the above code is compiled and executed, it produces the following result:
First Distance : F: 11 I:10
Second Distance :F: 30 I:120
The subscript operator [] is normally used to access array elements. This operator can be overloaded to enhance the existing functionality of C++ arrays.
Following example explains how a subscript operator [] can be overloaded.
#include <iostream>
using namespace std;
const int SIZE = 10;
class safearay
{
private:
int arr[SIZE];
public:
safearay()
{
register int i;
for(i = 0; i < SIZE; i++)
{
arr[i] = i;
}
}
int &operator[](int i)
{
if( i > SIZE )
{
cout << "Index out of bounds" <<endl;
// return first element.
return arr[0];
}
return arr[i];
}
};
int main()
{
safearay A;
cout << "Value of A[2] : " << A[2] <<endl;
cout << "Value of A[5] : " << A[5]<<endl;
cout << "Value of A[12] : " << A[12]<<endl;
return 0;
}
When the above code is compiled and executed, it produces the following result:
Value of A[2] : 2
Value of A[5] : 5
Index out of bounds
Value of A[12] : 0
The class member access operator (->) can be overloaded but it is bit trickier. It is defined to give a class type a "pointer-like" behavior. The operator -> must be a member function. If used, its return type must be a pointer or an object of a class to which you can apply.
The operator-> is used often in conjunction with the pointer-dereference operator * to implement "smart pointers." These pointers are objects that behave like normal pointers except they perform other tasks when you access an object through them, such as automatic object deletion either when the pointer is destroyed, or the pointer is used to point to another object.
The dereferencing operator-> can be defined as a unary postfix operator. That is, given a class:
class Ptr{
//...
X * operator->();
};
Objects of class Ptr can be used to access members of class X in a very similar manner to the way pointers are used. For example:
void f(Ptr p )
{
p->m = 10 ; // (p.operator->())->m = 10
}
The statement p->m is interpreted as (p.operator->())->m. Using the same concept, following example explains how a class access operator -> can be overloaded.
#include <iostream>
#include <vector>
using namespace std;
// Consider an actual class.
class Obj {
static int i, j;
public:
void f() const { cout << i++ << endl; }
void g() const { cout << j++ << endl; }
};
// Static member definitions:
int Obj::i = 10;
int Obj::j = 12;
// Implement a container for the above class
class ObjContainer {
vector<Obj*> a;
public:
void add(Obj* obj)
{
a.push_back(obj); // call vector's standard method.
}
friend class SmartPointer;
};
// implement smart pointer to access member of Obj class.
class SmartPointer {
ObjContainer oc;
int index;
public:
SmartPointer(ObjContainer& objc)
{
oc = objc;
index = 0;
}
// Return value indicates end of list:
bool operator++() // Prefix version
{
if(index >= oc.a.size()) return false;
if(oc.a[++index] == 0) return false;
return true;
}
bool operator++(int) // Postfix version
{
return operator++();
}
// overload operator->
Obj* operator->() const
{
if(!oc.a[index])
{
cout << "Zero value";
return (Obj*)0;
}
return oc.a[index];
}
};
int main() {
const int sz = 10;
Obj o[sz];
ObjContainer oc;
for(int i = 0; i < sz; i++)
{
oc.add(&o[i]);
}
SmartPointer sp(oc); // Create an iterator
do {
sp->f(); // smart pointer call
sp->g();
} while(sp++);
return 0;
}
When the above code is compiled and executed, it produces the following result:
10
12
11
13
12
14
13
15
14
16
15
17
16
18
17
19
18
20
19
21
No comments:
Post a Comment